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EVEN SETS OF NODES ARE BUNDLE SYMMETRIC

G. CASNATI & F. CATANESE

0. Introduction

Let k be an algebraically closed field of characteristic p # 2, and
let F = {f = 0} C P} be a normal surface of degree d. Let m: F —
F be a minimal resolution of singularities. We denote by H C F a
general plane section of F defined by a general linear form A. Assume,
for simplicity, that F ia a nodal surface (i.e., its sinpularities are only
ordinary quadratic, nodes for short).

Let A be a subset of the set of nodes of F, and let A :=7'(A). A
is said to be a §/2-even set of nodes, § = 0,1, if the class of A+ 6 H
in Pic(F") is 2-divisible (when § = 0 we shall simply say that A is even),

The condition I:_E'm.t ‘é‘,. is 8/2-even is equivalent to the existence of
a double cover p: § —+ F branched exactly along A + dn*H and (cf.
|6, 2.11, 2.13]) it is possible to blow down ™' (A) getting a commuiative
diagram

E'Ls'

(0.1) l

where 5 is a nodal surface and p is finite of degree 2 branched exactly on
A when & = 0 (respectively on A and H when § = 1; in this case d has
to be even). The surface S is then endowed with a natural involution
t such that F 2 Sfi and p is the quotient map. Thus we have an Op-
linear map i* : p.Os = p.Os giving rise to a splitting of Or—modules
P05 = Op & F where Op and F are the +1 and —1 eigenspaces of i,
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298 G. CASNATI & F. CATANESE

The sheaf 7 is not locally free because of the nodes, but we ghall see
later in Section 3 that it is reflexive and Cohen-Macaulay. Moreover the
multiplication map Og x g —+ Og induces a non-depenerate pairing
F % F = Oz(—4). Therefore F is a 8,2 quadratic sheaf in the sense of
the following definition.

Definition 0.2. Let X be a locally Cohen-Macaulay projective
scheme. We say that a reflexive, coherent, locally Cohen Macaulay
Ox-sheaf F is a 4/2-quadratic sheaf on X, § € Z, if there exists a
symmetric isomorphism o: F(4) = Homo, (F, Ox).

The aim of Sections 1 and 2 is to prove in dimension 3 the follow-
ing characterization of quadratic sheaves on hypersurfaces in projective
space,

Theorem 0.3. Let F C P} be a surface of degree d, and let F be
a d/2-quadratic sheaf on F'. Then F fits into an exact sequence of the

fﬂl’m
(0.3.1) 0= E(-d=8) -5 &3 F 0,

where £ 18 a locally free ﬂn': -sheaf and @ is a symmetric map.

An entirely analogous proof with more complicated notation gives
the same result in all dimensions.
Theorem 0.3 and the above discussion yield the following.

Corollary 0.4. Let F C P} be a nodal surface of degree d. Then
every 8/2-even set of nodes A on F, § = 0,1, ts the degeneracy locus of
a symmetric map of locally free ﬂw:--shmm& E(—d—8) € fie, F is
the locus where rk(p) < rk&£—1, A is the lpeus where tkip) = rk £ -2).

In the above setfing we say thal A is a bundle-symmetric set of
nodes. If it is poasible to find such an £ which is the direct sum of
invertible Ops—sheaves, then we say that A is a symmetric set of nodes
(see [6]).

Corollary 0.4 was conjectured in 1979 independently by W. Barth
and the second author. Barth proved in [1] that bundle-symmetric sets
are even while in [6] the converse result was proved under a cohomolog-
ical assumption which gives a complete characterization of symmetric
sets of nodes.

As soon as Walter’s beautiful solution of Okonek's conjecture came
out, it was immediately clear that his method would also work in our
case,
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Finally, in Section 3 we apply Corollary 0.4 to the study of nodal
surfaces of low degree d, namely d = 4,5,6. This study ties up to an
interesting history for which we defer the reader e.g. to [8], (6], [4], [7],
[16], [2], [12]. In particular we get the following result.

Theorem 0.5. Let F € P} be a nodal surfoce of degree 6. Then
every even set of nodes A on F has cordinality either 24 or 32 or 40,

Using the above result, J. Wahl (see [17]) was able to give a simple
proof of the result of D. Jaffe and D. Ruberman stating that a nodal
surface of degree 6 can have al most 65 nodes.
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1. A resolution of F

In this section we deal with the construction of a resolution R*
of any §/2—quadratic sheaf F on a surface F C P of degree d. We
shall make use of notation and results proved in [18] about Horrocks’
correspondence.

Lemma 1.1, Let ' C P} be a surface and let F be o 4 [2-quadratic
sheaf on F. Then pdg F. =1 jor cach z € F and E:u‘ilﬂrif,ﬂf‘] =
h|r

0.

Proof. By definition depth ¥, = dimF, = 2. Then the equal-
ity Pdﬂri F, = 1 follows from Auslander-Buchshanm formula taking

account that the depths of F» as Op;-module and as l.'_]ﬂli—mm]ute
coincide. E::Et!.'h- (F, Or) = 0 follows from [10, Theorem 6.1. q.e.d.

Let d + 8 be even. From the spectral sequence of the Ext’s, Lem-
ma 1.1 and Serre's duality, follows the existence of isomorphisms for
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240 G. CASNATI & F. CATANESE

1=1,2

H'(F,F(m)) = Extg* (F(m),wpp)
(1.2) =H"'(F, Homo, (F,Op(d - 1—m)))
2HF F(d— 4—m+9)).

In particular, if m := (d — 4 + 4)/2 is an integer, there exists a non-
degenerate alternating form

O: H'(F,F((d—4+98)/2)) x H'(F,F((d -4+ 8)/2)) = H*(F,wrp),

and we denote by U a fixed maximal isotropic subspace with respect to
$.

Define

W= ﬁqu-uﬁm H! (Fu-F{m:l) if & + ¢ is odd,
Brca-trayz B (BHF(m) ®U  ifd + 4 is even.

As usual H! is the Serre functor associating to a quasi-coherent sheaf
G the graded module H}(P},G) := @, .y H'(P},G(n)). Let ['. := HY,
and let BI'. be its right derived functor in the derived category. Then
H,(P{, @) is the i-th cohomology module of the complex RT, (G).

As in [18, Section 2] ome considers the truncation. Let D* be a
complex with differentials &: D* — D'*! let s € Z, r < s and
let W C H*(D") be a subspace, Then W may be pulled back to W
satisfying im(6°"!) C W C ker(#*). We denote by Tu,r7eqw(D®) (if
W = H*(D*) we will omit it in the subscripts) the complex C'* defined
as follows:

#

0 ifi<r—-lori>s+1,
G‘v:{ﬂi ifr+1<i<a—1,

D" ker(§") ifi=r,

EW if1=a.

Let us now consider the truncated complex C* = Toomc wRIW(F].
By definition we have

o _ JW Ei=1,
H{{c}—{ﬂ elsewhere,
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and there ig a natural map
g: C" = T}ﬂT-Eer. [.?‘_]-

Since H] {F. F}, hence W, has finite length we can apply to the com-
plex C* the syzygy bundle functor ([18, Theorem 0.4]. Cf also the
construction given after Corollary 2.8). We obtain a locally free sheaf
Syz(C*) and a morphism of quasi—coherent sheaves

g: 8ya(C”) -+ F

such that 3 = r:,un_;gHI_‘:{fi'—] ([18, Propesition 2.10]).
Let (@ := coker I:HE' {ﬂ]} This means that we have an exact sequence
of the form

H, (P}, Sy=(C*)) H?—{ﬂ:} H)F,F) =+ Q- 0.

Let dy,...,d; be the degrees of a minimal set of generators of Q. These
generators lift to H?(F,F), allowing us to define an epimorphism

v: £ := Sy (C*) & @ﬂpi{"dﬂl - F

i=1

which is surjective on global sections. By construction £ is locally free.
If K := ker(q), then we have an exact sequence

(1.3) RY: B Kt E i F il
Proposition 1.4. In the above sequence (1.8) K is locally free and

rk X =1k .

Proof. We know from Lemma 1.1 that for each ¢ € Pi one has an
exact sequence of the form

0= KL =€, = F; =0,

where K, and £, are free (and depend upon z € P}). Moreover, since
JF is supported on F,
a“nﬂri.a b P 1 1

Therefore tk X, = rkE] (see [13, Theorem 195]). The statement now
follows from [13, Theorem A, Chapter 4] {Schanuel's lemma). q.e.d.
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Proposition 2.10 of [18] implies for ¢ = 1,2 that
H'(C*) = H! (P}, Syz(C")) = H1(P},E),

and that Hi(+) coincides with H:(#). Thus the above comstruction
yields:

i) HY(y): HY(P},£) = HY(F, F) is surjective by construction;
i) Hl(y): HMIP},£) — HL(F,F) is injective since
H(P,&) =H'(C) =W
(in particular HY(PY, £((d — 4 4 6)/2)) = [);
iii) H?(v): H2(P}, &) = HZ(F,F) is zero, in fact HJ (P, £) =0,

From the above remarks taking the cohomology of the sequence (1.3)
we then get:

iv) H(IF,K) =0
v) HX(P,K) = HLF,F)/W.

Recall that F(§) = Homo, (F,Of). On the other hand one has an
exaclh sequence

(L5) €1 0 Opa(—d—5) 21 Opa(—8) - Op(-8) > 0.
Applying Hﬂm‘:’ri (F,-) to sequence [1.5) gives
0 = Homep, (F,Op(-5)) 45::3;.#% (F, Ops(—d - §))

f
—}Ez:::,ﬂ (F,Ops(~4)),

and since the multiplication by f is zero on Emié:,ra (F, Ops(—d — d)) we
&

obtain an isomorphism

¥ - Fl’mmlﬂr{‘F:ﬂF{-é}} e EIEII?I.E {-Fa ﬂﬂ‘i[_d_ 'E}}
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Proposition 1.6. Let sy be as above. If there is a commutative
diagram
b= K & pEEl F 3D
|:]..ﬁ.l]' Jl: lh l’{l

0= B(~d = 5 -2 B=d = §) oEntly (F,Opa(—d - §)) =0,
&

then the maps 8; are itsomnorphisms.

Proof. By construction sy 15 an 1somorphism, thus it suthices to
prove the bijectivity of s1. This will follow from Lemma 2.12 of [18] il

we show that conditions (i), (i1) and (iii) of that lemma are satisfied for
the composition

£ 4 K(—d - 8) D Exthy , (F, Opy(~d - 5)).

Condition (iii) that £ and K(—d — &) have the same rank was already
shown in Proposition 1.4.

Since ¥ o 8) coincides with the map «: £ — F, condition [ii) holds
by the very definition of £.
We have to verify (i) namely that
Hi(s1): Hi(P} &) = HI(PYLK(—d — 5))
are isomorphisms for 1 = 1,2, Diagram (1.6.1) yields the equality
Hi(7) o Hi(s1) = Hi(s0) o Hi ().
Note that H? I:.:iu) are isomorphisms and the maps H? [*:r:l are injective,
hence the same is true for the maps H:(s;). A .
Since K and £ are locally free, hoth H} (P}, K.(—d—d)) and H} [!‘3. £)
have finite length, thus we have only to prove that their lengths coincide.
We begin with ¢ = 2. Here both modules are (:
We (PR K(E) = kM (PR K(—4 - 1) =0
by iv) while % (P, £(t)) = 0 (cf. iii)).
Let now ¢ = 1. One has
W (PR, K(1) = dim (H* (P}, K(-4 — 1))
= dim (H'(F,F(-4 — 1)) /W_4_
() if-4—t<(d—4+4)/2
= ¢ dim([7) if =4 —t=(d-4+4)/2,
W Y (F,F(-4—1)) if-4—-i>(d-4+46)/2



244 G. CASNATI & F. CATANESE

By (1.2), h' (P}, F(—4 — 1)) = h* (P}, F(t + d -+ 4)) and so the desired
conclusion follows. q.e.d.

2. Proof of Theorem 0.3
This section is devoted to the proof of the following.

Claim 2.1. It is possible to construct dingram (1.6.1) in such a
way that s; is the transpose of sy.

Assuming 2.1 we have the

Proof of Theorem 0.5.  Just set y := s7' o d which is obviously
symmetric. q.e.d.

Proof of Claim 2.1,  Qur first step is to extend the natural map
n: 8*F = Op(-4), induced by the symmetric map o, to a chain map
p: S*R* — C* (see sequences (1.3) and (1.5)):

0AK-EL keE B S22 o 8'F S0

o e o e
0 — Opy(~d—8) "B Ops(~8) -+ Op(—4) 0.

Assume that ¢ does exist. Then we get a map a,: & — K(—d —4). It
is obtained from ¢; through the natural isomorphism

?{gmﬂrﬂ (K& E,c},:{m]} = Hmnﬂr: (£, K(m)).

Let 53 be the transpose of s,.

We claim that 5y 0d = do 54, i.e., that the above diagram (1.6.1)ac-
tually commutes. It suffices to verify this equality at every point ¢ € [P’i
Choose &, # € Kz. Since (s;0d(a), A) = ¢1(d(a) @) and {dosy(a), ) =
(e, 51 o d(3)) = (e @ d{3)), our claim follows from

O=ga(axnp) =dr0di(arF)=diladd) — A& da).

There remains only to prove the following proposition.
Proposition 2.2. ¢ erisfs.

Proof.  In order to have ¢ it suffices to define ¢y, Indeed the
image of ¢ o §y is contained in the kernel of E?Fgl:—ﬁ} — Op(—4) which
coincides with the submodule fﬂpz{—d —d).
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Then we simply set ¢ = }I'r!ﬁlu o 8.
We want to lift the composition

Pi=na8iy: SE 3 §2F = Op(—8)

to a map do: S2E — Opg(—b).
From the exact sequence (1.5) we obtain the exact sequence

0 — Homo,, (S5°E, Ops(—d — §)) = Homo,, (5% &, Opa(~4))
—+ Homo,, (S2E,0p(~8)) = Em;:,,ra (8% €, Ops(—d - 8))
> HY(P,S* E(—d - 6)) = H? (P}, 82 E(d - 4 + )]
We conclude that 1 is liftable if and only if
A(w) € H*(PY, 5% E(d — 4 + 5))

is the zero map. First of all notice that, interchanging the roles of A*
and 5% in Section 4 of [18] and imitating word by word the proofs of
Lemmas 4.1, 4.2 and Corollary 4.3 of [18] we easily oblain

=, 0 if d + ¢ is odd
H(P;, S2E(d—a+0)) = ¢, ; ’
(s (g=4+8) {ﬁ*Hl{Pﬁ.E[{d—d +8)/2))  ifd+ 4 is even.
M) e HA(P), 8% E(d — 4 + 45}}" is identified with the map
i+~ HNap)): H* (PR, S*E(d— 4+ 68)) - HY (P, Ops(—4)),

where

w: HY(P}, 52 E(d — 4+ 8)) x H' (P}, 82 &(—d - §))
—+ H (P}, SPE@SPE(-1)

is the cup produet and
a: H3(PLS2E @ S2E(-4)) — Hn{""'?.:.ﬂpg[—ﬂ}

18 the natural contraction.
Thus ) = 0 if and only if

(2.2.1) Mo B ay)) =0
in HY(PY, Opy(—4)) for each o, 3 € H' (I, £((d — 4 + 8)/2)).
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We have a commutative diagram:
H2(P}, S*E(d—4+68)) = ANHPLE((d-4+5)/2)

| #2(v) Jj’ﬂ” ()

H*(F,0p(d-4)) <= NH'(F F((d—1+4)/2))

la‘r
HO (), Opy (~4)
We claim that

Lemma 2.3. J(- - ) = —@ o H*(¥).

The above assertion implies @(y) = 0 since, by formula 2.2.1,
@ o H:(y)(a ~ A) = 0 because o, @ € H' (P}, E((d — 4+ 4)/2)) = U
which was chosen to be isotropic with respect to @,

Proof of Lemma 2.3. Let U := {U;}i=0, 3 be the standard open
covering of P}. For each i we fix a lifting v,: &y, — Oy, (—4) of Wier,.
Notice that ﬁi - iﬁl} maps to _fﬂn.:{—-d - §) C ﬂrif—ﬁ]. On the other
hand,

o) € H* (P}, S*E(d—4+4d)) = H'(P}, 52 E(-d - 9))

represents the obstruction to Lifting ¥ to ¢y, whence
e
) = Fwﬁ — ;) € H' (U, 8 E(—d - §)).

We now compute explicitly &' o H*(y) and (- — 8(x)) using the
fact that each element inside H?(IP, S* £(d —4+4)) can be written as a
sum of terms o — (§ where e, 8 € H' (U, E((d—4+8)/2)). @ — 8 < ()

18 represented by the cocycle

{ﬂ: s b ai"&}] indiasds }{ﬂ’“ sy l‘.i‘:i @ {J—"’? =5 1};1-411
hence

(2~ B8 9D iy = 7 o s ) = s i B i)
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On the other hand, Hz(ip} (e~ B)ign = (et %), whence

: 1, ~ :
& o H* f*i’}{ﬂ' o H}iunl: h2yis ZF[‘IE’J‘Q':HHMEH da) — Wi, [ﬂ’i;.-i;.ﬁi; is)
¥ ﬁﬁ(“ﬁu,iu"ﬂﬁ .i:q} = J—'I'_'I-:q{irl.lhl-l ﬂu,h”i

where j, € 11g,%1,12,83} ) {#a}- In particular choosing 90 = 51 = jo = 13
and jﬂ- = i‘? and 1.15]]1]!: that ﬂi1,1::| _&in.f: +ﬂ'!'r,|,i1 =Y [I. .ﬁh i3 _.Idll-!'.l:] +.|I:[I:,1:| =t
0 we get

i o HE{TI"I}:*-' ~ )i iy iz b

- }{fﬁut—mn.u{mu — Biris)) = Vg (i iy iy i)
T
T f

Then the proof is complete.  q.e.d.

Remark 2.2. Theorem 0.3 holds without the assumption F C P}
It suffices to consider any hypersurface F C P endowed with a 4/2
quadratic sheaf F.

(i (g i By ) — Wi i By )) -

4. Examples and applications

[n this section we shall consider the case of a nodal surface of small
degree d = 4, 5,6 and we shall see how our main theorem can be used
to classify o /2-even sets of nodes, going beyond [ﬁ], Section 3 and [4]

Moreover from now on the ground field k& will be equal to the field
C of complex numbers.

Following the notation used in the introduction we begin by proving
the following,

Propaosition 3.1. The sheaf F defined in the introduction is §/2
guadrotic.

Proof.  Notice that Fp 4 is invertible, hence reflexive.

The multiplication map Og % O —+ Og induces a symmetric non-
degenerate bilinear form F x F — Op. If § = 1, such a map factors
through the multiplication by h, A(h): Or(—1) — Op. Thus, in both
cases, we gel a symmetric bilinear map F x F — Op(—d) inducing a
monomorphism e: F(d) ~— F = Homoy (F, Or) which is obviously an
womorphism outside A, whence a global isomorphism since § s normal.

247
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Hence F is isomorphic to 7 and, indeed, F is reflexive which means
that the natural map F - 7 is an isomorphism (in fact g is injective
since F is torsion—free, and coker(y) = 0 since F and 7 have the same
Hilbert polynomial). L

If z € A, the completion F; fits into the exact sequence

nE2 L,.5pHe1 _, T _
ﬂ_’ﬂﬁm_*mu'ﬁ.; + Fr =+ 0,

where 1 is induced by a matrix of the form

w2
r yt’
w, 2,y being local parameters in Upn Therefore we see that F, is

Cohen-Macaulay as a module over ﬂFa ..l

Im!tﬂi]ﬂg the construction of F, there exists a decomposition
p,ﬂ = Bl IS'~ @& L where £ is now invertible since F is smooth.
Mﬂrmvcr Tl = F, p.0g = Op @ L. Since

R'%,05 = R'=x,0p5 =10,

diagram (0.1) and the spectral sequences of the composite functors
RPn. R, and BPp, R97, yield B'x,.£ =0 thus

W(F, L ®x*Op(m)) = h'(F, F(m)).
Note that
(3.2) HY FF(-m))=H' (ARFm+d-44+8)=0, m>0

{Theorem 1 of [14] applied to p*7*O5(1} and formula (1.2)). More-
over by [6], Theorem 2.19, we gn:l thal A is symmetric if and only if
M (F,Fm)) =0for0<m < (d—1)/2
We have the long exact sequence
0 - H'(F,F) » H'(F,F(1)) - H'(H, F(1) )
(3.3) - H'(F,7) 28 5 (£, 7)) » HY(H, F(1)5)
— H*(F,F) = H*(F,F(1)) = 0.

associated to every h £ Hﬂ[ﬂ”.ﬂl.iﬁl}] (defining a plane section
H C P}). Notice that in any case h?(F,F) = U since § is connected.
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Moreover, by (3.2) we have H'(F, F(=1)) = 0, and thus H'(H,Fiy)
0 for each H.

Since h does not divide f := det{y), the restriction to H of the
exact sequence 0.3,1 remains exact. Hence F|y is again a d /2—quadratic
sheal. Mutatis mutandis, Theorem 2.16 and Propesition 2.28 of [6]
apply; therefore F i has a free resolution

(3.4) 0 —+ ﬂaﬂg —£y) =%y @ Og(—ri) = Fg = 0,

i=1

where H C P} is the plane defined by h. In (3.4) a:= {ﬂ"ﬂ:}idﬂ.---m 15 A
symmetric matrix of homogencous polynomials oy ; of degrees
(d;+d;)/2, where the d;'s are in nol-decreasing order, d; = d;, d = d+d;
(mod 2), &; = (d +d +d;)/2 and ry = (d + 6 — &;)/2.

As in 6] we see the following:

) di +dg i1 2= 0 since det(a) # 0;
i) di +dp—i > 0 if det{a) is square free;
iii) vy > 0 since h*(H,Fiy) =0, ie, di <d+6-2
iv) d; + dy—y—4 > 0 if H = {det(a) = 0} is smooth.
Notice finally that

P
d = Ed-.- = Z (i + dpp1—i) + dprryra

i<p/2

Here dy = 0 if A is not an integer. We then get the following cases for
the p-tuple (di,...,dp):

d=4,5=0(22), (0,2, }[nn, ,2);

¢£=d,5—1{13} 014100 113],[— ~1,3,3);

d=56=0(11,39),(-1,3,3), (-1,1,5, 1,1,1,1,1), (=1,1,1,1,3),
(-1,-1, .5 3);

ba L6 =0 (2,4), (2,2,2), (-2,4,4), (0,2,2,2), (-2,2,2,4),
(0,0,2,2, 3}

On the other hand, if we assume that H is smooth, then most of the
above possibilities disappear and we are only left with:

d=4, 6=0(22);

d=46=1(1,3), (1,1,L,1%

240
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d=5,6d=0(1,1,3), (1,1,1,1,1).
d=6,d=0(24), (2,22), (0,2,2,2).
3.6. Thecase d=4,d =10

For all H we have h'(H,F(1)g) = W' (H,Fig) = 0 whence
h?(H,F(1);5) = 2 (Riemann-Roch), hence formula (3.2) yields

h'(F,F(1)) = ' [F, F(-1)) = 0.

Moreover h' (F, F ) is dual to itself, whence it has even dimension. Recall
that

x(F) = (8 — t)/4,

where { is the number of nodes of F' (see [6, Proposition 2.11]).

If k' (F, F) =0, then A is symmetrie of type (2,2), h'(F, F(1)) = 2
and t = 8,

If h'(F,F) = 2, then h'(F,F(1)) = 0, t = 16. It follows from
condition ii) of Section 1 that A (IP},&) = 1 and A' (K, £(m)) = 0 for
m # (). Moreover recall that h (P, £) = 0 (condition iii) of Section 1).

The Horrocks correspondence shows that £ is stably equivalent to
!Z'l’i (stably equivalent means that adding respective direct sums of in-

vertible sheaves we get isomorphic sheaves). Therefors, by the construe-
tion of £, since A° I:F‘E'1 ﬂll,._q} = hn{lﬂf, ﬂI:E"E“ }} =[], we may assume that
k

RO(IPE, £(1)) = 0. Since we have &' (F, F(1)) =0 for i = 0,1,
W (F F(2) = b (H, F(2)u) = h° (B, Oy (2)) = 6.
Recall (Section 1 ii)) that there is an epimorphism
HY(P},£(2)) — H"(F}, F(2)).
Let 6 — r be the rank of the induced map
HO (P}, 03(2) - HO (B}, F(2).

Then
€20 ®Opa(-2)* 0 Opp(-3)¥ @ ...

We claim that rg =ry =--. =0,
Indeed, by Beilinson’s thearem (see [5]) applied to £(1), since

H3(PR.E(—1)) = HY (P}, £(-3)),
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which, by Theorem 0.3, injects into H (P, £(1)) = 0, we get
£(1) = (H'(P},€) @ 0hs(1)) @ (H*(P},£(-2)) @ Opp(-1)).

Thus £ = n},E ® Op3(—2)®" and E(-4) = ﬂf’i @ Ops(=2)*". Tt follows

that
_ ¥l e
¥ (*ﬂi,z hﬂz.z) !

where w2 4 15 a constant r % v symmetric matrix which must be zero by
the minimality of £.

If r = 4, then det{yw) = 0 which is absurd.

If r = 3, then rk(iz; 2) < 2 on a surface Y of degree ¢ mé’ﬁ”” =2,
and F = 2V, again a contradiction.

If r = 2, then there is a curve I' of degree cg{ﬂ%ﬂﬂ}] = 2 where

[

rkiywi o) < 1, whence T is a double curve for F, which is again absurd.

If r = 1, then i, 5 ia a section ufHﬂ[Pi.f!;,i{E}] = A2HO (5}, Opy(1))-

If the rank of this alternating map is 2 then ¢, 5 should vanish on a
line I' (since ) 9 = zgdr; — xydry for suitable coordinates), which is a
double line for F, absurd.

We conclude that ) g corresponds to a non-degenerate alternating
form. With a proper choice of the coordinates we can assume that ¢ »
corresponds to xpdr| — xdoy + zodry — z3dny. Then E'Ff{vﬂ] 15 iden-
titied to a subbundle of ﬂ}.r and dually ﬂgi - EFE{_E} is surjective. As
in [1] we define the null-correlation bundle V; as
Vp = ﬂl},{ (2)/im(; 2(2)) and we obtain a self dual resolution

0 — Vo = Vo = F(2) = 0.
Finally if r = 0 we get
0 = (Dpy(2)) = Npy(2) = F(2) = 0.

We have therefore shown that for quartic surfaces all even sets of
nodes are either symmetric or £ = 16 and we have exactly the two cases
described in [1].

3.6. Thecased=4, § =1

As in the case § = () we have again h' (F, F(1)) = (. We get hy (1.2)
that A'(F,F) = h'(F,F(1)) = 0. It then follows that A is symmetric
of type either (1,1,1,1) or (1,3).
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3.7. Thecase d=15

In this case § = 0 as we already noticed. Sequence (3.3) is self-dual
and

A: HY (P, Ops(1)) - Homy (H' (F, F(1)), ' (F, F(1)))

maps to the subspace of alternating bilinear forms.

If H is smocth, Fig is of type either (1,1,1,1,1) or (1,1, 3), and
thus h°(H, F(1)5) = k! (H, F(1)14) < 1 by (3.4).

The map A(h) is an isomorphism if either h”[H1.‘F'{I} ,,1} = 0or
h*(F,F(1)) = 1. In fact in both cases, h°(F, F(1)) = hﬂeﬂ,ﬂnlﬂj
and the assertion follows easily from the self-duality of sequence (3.3).

If for a general H the map A(h) is an isomorphism, then A (F, F) is
even, and if it is not zerc the plaffian of Ah) defines a surface B C E“,:
of degree h'(F,F)/2 which is contained in the dual surface ¥ of F.
Since F is nodal, then it is of general type, and by biduality also F' is
of general type; therefore one has deg(F) > 5, whence h!(F, F) > 10.
We conclude that

t/4 -5 = —x(F) > 10,

hence t > 60 which implies deg(F) < d{d — 1) — 2t < —40, an ab-
gurd, Thus the only possibility is h!(F, F) = 0 and we get that A is
symmetric.
Finally if, for H smooth, h°(H,F(1)5) = 1 and h°(F,F(1)) = 0
then dim(ker(A(h))) = 1, thus &' (F,F) # 0 is odd (A(h) is alternating).
In any case h'(F, F(2)) = 0 (again (3.2)), hence we have the exact
sequence

0— HY(F,F(2)) = H(H,F(2)js) = H'(F,F(1)) = 0.

In particular h” (H, F(2);) does not depend on H. If H is general, then
H 1s either of type (1,1,1,1,1) or (1,1, 3), hence sequence (3.4) implies
hY(H,F(2)jg) = 5. On the other hand if h'(F,F) > 3, there exists
H such that dim(ker(A(h))) > 3, whence H is of type (=1,1,5). Thus
looking at sequence (3.4) we get h'(H, 7(2),5) = 6, a contradiction.

We have therefore restricted ourselves to the case ' (F, F) = 1.

In this case h! (F, F(—1)) = 0 (formula (3.2)) and h°(F, F(-1)) = 0;
thus h®(F, F(2)) = h*(F,¥(-1)) = 4. Beilinson's theorem then yields
a sequence of the form

0 = Opy (1) @ 033(2) = Oy @ (1) —+ F(2) 0,
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where
_ [PL]l ¥1.2
v (w,i *PE.E) '
Moreover Beilinson's spectral sequence and the fact that AMh) = 0 for
each i imply that o 2: H;",i (2) — ﬂ],i,{]} is rero. In particular we see
that ﬂ;r,l;‘%il:}ﬂfl} has the required properties for £; thus we may assume

that
£(2) = Opy @ (pa (1)

and that @ is symmetric.

However, the determinantal quintic # should be singular along the
set [ C P} of points where rk(ip; 2) < 2 which has dimension at least
1 (generically L is a pair of skew lines). In fact det{y) belongs to the
square of the sheaf of ideals of . We have reached the conclusion that,
for d = 5, A is always symmetric (as shown in [4]).

3.8. Thecased=6,0=10

For each maximal isotropic subspace U € H'(F, (1)) we can define
the locally free Opa-sheaf £ as in Section 1 satisfying conditions i), i)
and iii) of that section. Since the square

E —m F

1.\{&; [m;

E(1y — F(1)

is commutative for each h € HY {[Fi, E]D.E[l}]., we obtain that the image

of H*(P{, Ah)) is contained in [/, Taking into account the arbitrariness
of U, we linally obtain the following proposition.

Proposition 3.8.1. The multiplication map
HY (P, F) x H' (P}, Ops(1)) — H' (F, F(1))

i3 zero.

We must make some remarks on the possible dimensions of certain
cohomology groups. Notice that the theorem of Riemann—Roch applied
to F yields

X(F(1) =8~ 7
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If H is smooth, then ¥y is of type either (2,4) or (2,2,2) or (0,2,2,2),
so that h%(H, F(1);) < 1; whence, by (3.3),

W(F,F(1)) < W (H,F(1)5) < 1.
IfAY(F,F(1)) = 1 then
K(S, x*Op(1) @ £71) = h°(8, 7" Op(1) @ L) =

thus there exists a curve €' C F of degree 6§ passing through the set of
nodes A, Sinee Sing(F) is finite, for a general choice of the coordinates
Ty, ...y F3 IN F‘L the partial derivative df [0z does not vanish on any
component of ¢, Denoting the corresponding surface by &, wa obtain
t:=card(A) < O+ G = 30, Since £ is divisible by B, we conclude that
i < 24,

It follows that

0 h(FF(1) =2 x(F(1) = ;-6 <0,
and sequence {3.3) then becomes
0— H'(F,F(1)) = H*(H,F(1)5) —+ H'(F,F) =+ 0.

If H is smooth, the only possible case is that H is of type (2,4) and
WO(F,F(1)) = WO(H,F(1)) = 1, ie, h'(F,F) = 0. Hence A is
symmetric of type (2, 4).

From now on we shall therefore assume &Y (F, F(1)) = h2(F, F(1)) =
0, so that

L
X(F(1) = -h(F.F(1)) =8 - 2 <0,
It follows that ¢ = 32 and the equality holds if A is symmetric of type
either (2,2,2] or (0,2,2,2). Set 27 := h'(F, F(1)) = —8+1/4. Sequence
(3.3) becomes
0— HY(H,7(1)5) - B'(F,F) X BY(F, (1)) -
— H'(H,F(1),y) = H*(F,F) - H*(F,F(1)) > HY(F,F(1)] = 0.
Since Al(h) = 0 by Proposition 3.8.1, we obtain a := R!'(F,F) =

W(H F(lyy) <1, 2r < 3+a = h'(H, }"{1}|H] b= h(RF) =
3 + a — 27. Finally, notice that &*(F, F(-1)) =0, for i = 0, 1.
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The Beilinson’s table for F(2) is

e b 0O 0
0 a 2r a
00 0O b

Since b >0, 7 <2 Hr =2, thenfbi=0and a=1. If b =0, since
also A(h) = 0, then the differential dy is zero. Thus Ea'' = 02,(2),
k
contradicting ER =0 if p # —q.
We can summarize the above results in the following statement.
Theorem 3.8.2. Let F' C P} be a nodal surface of degree 6. Then

for each even set of nedes A on F, t := card(A) = 24, 32,40. A is not
symmetric if ¢ = 40,

Let us briefly examine the case ¢ = 40, Then we can choose e.g.
£ 1= ﬂl}.i[—l,‘l @ Opy(~2). We thus get the sequence

0 = ©°(2) @ Ops(—1) —+ n;,iqz] @ Ops(1) = F(3) = 0.

In particular we have a sextic surface everywhere tangent to a Kummer
quartic, This example was already described in [6, Proposition 2.24].
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